FreeSWAN KLIPS version 2 requirements and
implementation schedule

Michael C. Richardson
Sandelman Software Works Inc.
On behalf of FreeS/WAN

mcr@sandelman.ottawa.on.ca

September 16, 2001

1 Executive Summary
$Id: klips2req.tex,v 1.4 2001/09/17 03:37:26 mcr Exp $

This is a plan for evolution of current FreeSWAN KLIPS code into “next
generation” KLIPS code. A review of requirements and applicability to intended
design is presented, followed by a review of current KLIPS1 architecture.

The target architecture is then described.

A plan both to develope this document and to transition from old to new is

presented.

2 Current KLIPS input/output structure

2.1 output: ipsec_tunnel start xmit
1. gather private information
2. clone skb if necessary

verify that packet is IPv4

compute hard header length

decrement TTL

lookup in erouting table

UDP port 500 exception

© N o oo W

start encapsulation loop

—~

a
b

) check for DROP or missing eroute
) check for REJECT eroute
) check for PASS eroute

d) check for HOLD eroute
)
)
)

—~

C

o~

e) check for TRAP eroute, signal PF_KEY, swap to HOLD eroute

f) acquire lock for walking tdb chain

g

N~

calculate headroom required for chain

i. check if SA is in larval, drop

ii. check if SA is dead, drop
iii. check if replay overflowed, expire SA

iv. check if lifetime counters have overflowed, expire SA

v. switch on protocol type, to calculate headroom size.

A. if ESP switch on protocol type to calculate tailroom size.

calculate mtudiff, send ICMP fragment needed. Mark “note2”
hack MSS if desired

)
)
j) copy upper (layer 2) header to safety if it was present
)
)

—~
oL =

check if data fits in existing skb, else expand.
apply grouped transforms
i. apply disaster of #ifdefs.
ii. switch by protocol type, calculate headroom for this stage
A. if ESP, then switch by cipher get headroom
B. if ESP, then switch by hash to get tailroom
ili. double check (not in NDEBUG) if there is enough headroom

iv. push the data ahead
v. double check (not in NDEBUG) if there is enough tailroom
vi. extend the data behind
vii. see if packet has become too long (bigger than 64K)
viii. finally move the plaintext as appropriate
ix. switch on protocol type
x. case: ESP
A. switch on cipher type, prepare IV
B. prepare self-describing padding
C. switch on cipher type, do encryption
D. switch on cipher type, update IV
E. switch on hash type, do authentication
xi. case: AH
A. prep replay info, headroom
B. switch on hash type, do authentication
xii. case: IPIP, apply encap
xiii. case: IPCOMP
A. call skb_compress
B. do some debugging
xiv. recalculate header checksum

(m) lookup eroute by new outer header, if we found something and the
src/dst have changed

9. send ICMP if packet has become too big
10. re-apply link layer header if there was one.
11. attempt to re-route the packet
12. drop packet if new route leads to us again.
13. do connection tracking
14. do netfilter localout output call

15. call ip_send or IP_SEND depending on kernel version

2.1.1 Comments upon problems/limitations of transmit

2.2 input: ipsec_rcv

1. increment module use count
2. verify skb and data is not NULL

3. verify hard header length

® N vt

10.

clone (COW) if necessary

a number of poorly documented “assertions”

verify protocol number against packet and against protocol structure
verify that protocol is AH, COMP or ESP.

lookup each ipsecX device to determine which one has been bound to the
receiving device. Grab ipsecprv device info.

if no device found, warn, but do not die
begin decap loop
(a) lock tdb if this is first time through
(b

(c
(d

(e

verify that length is appropriate multiple if ESP
switch on protocol type, grab SPI value from appropriate place

format sa with satoa. (not found in code)

—_ — — O

if AH, then determine AH header length, find next protocol value,
and verify against expected length of AH header.

(f) get spin lock if required
(g) if IPCOMP

i. check if IPCOMP is out most header, (not yet supported)

ii. advance the tdb pointer and, if doing inbound policy check, then
check SPI value. Complain if not matched.

iii. decompress packet, reset ip header pointer to new value, loop
(via continue)

(h) lookup tdb based upon SA. gettdb
(i) complain if no tdb
(j) if doing inbound policy check
i. check that outer source matches one on packet.

ii. check that this tdb is the expected next from previous. (forward
check)

iii. check that this tdb expects to be attached to previous. (reverse
check)

(k) check if tdb state is larval, skip
(1) check if tdb state is dead, complain

(m) check lifetime (bytes - soft/hard, addtime - soft/hard, usetime -
soft /hard, packet count - soft/hard). Expire TDB, tell pfkey if limit
exceeded.

(n) pick authlen, switch on auth type (MD5, SHA1)
(o) switch on protocol type (ESP, AH only) and set up authenticator

(p) check sequence number to see if replay window rolled, if so expire
(q) check out replay window, dropping if it is a replay
(r) verify authenticator, check if there was authentication, switch on type

i. MD5, call MD5Update and friends, checking if ESP or AH was
involved

ii. SHA1, call SHA1Update and friends, checking if ESP or AH was
involved

iii. none, do nothing

(s) check authenticator for NULL (which would imply not AH or ESP
above)

—~
o+
~—

compare authenticator against hash, complain if failed
(u) update the replay window
(v) switch on protocol type
i. if ESP
A. switch on encryption algorithm
e if 3DES, then find IV and set header length
e otherwise, fail
B. locate ciphertext based upon header length
C. switch on encryption algorithm
e if 3DES, verify data length multiple of 8 and decrypt.
e no otherwise clause
D. find next header type
E. find padding
F. verify padding
ii. if AH, do nothing
(w) update protocol number in header (why?)
(x) switch on protocol type

i. if ESP, the memmove as appropriate for ESP, skb_pull() to com-
pact, and then skb_trim.

ii. if AH, then memmove as appropriate for AH, skb_pull().
update skb pointers to parts of packet.

)

(z)

(a) recalculate the header checksum

(b) set the sbk protocol type to IP over ethernet
) advance tdb pointers
) if doing inbound policy check

i. verify that backward policy agrees with forward policy

ii. check if next protocol field is not one we know about
A. complain that policy was not complete

(e) update ipcomp ratio counters if IPCOMP was involved, but this stage
is not IPCOMP

(f) update the lifetime values in bytes, packets, and last used time.
(g) loop again if ESP, AH or IPCOMP

11. if original chain was IPCOMP, then advance tdb chain once (Why?)

12.

if there is one last tdb

(a) verify that last protocol type was IPIP (no transport supported here)
(b) if doing inbound policy checks

i. advance tdbnext with inext, and complain if non-NULL. (i.e.
check that this was last tdb)

ii. verify source IP address matches tdb source
(c) update lifetimes for this tdb
(d) if skb data len is too small for header length, complain

(
(

e
f
(8
(h
(i) update layer 2 protocol info to IP over Ethernet

(J

pull up new header into skb
advance ip pointer to inner header
update raw header pointer

zero protocol options

)
)
)
)
)
)
)
)

reset, checksum info

13. if we are doing EROUTE checking (i.e. tunnel exit checking)

14.
15.
16.
17.

(a) setup for look up by src/dst in eroute table, checking for IPIP header.

(b) lock eroute table, lookup eroute

(¢) record info we need and unlock

(d) if we found what we need, then lock, and lookup policy information
by new said block.

(e) if no tdb found, then we drop packet
(f) walk policy_tdb chain, look for last one

(g) compare against tdb that we just used, complain if not the same.
unlock tbd
update stats if appropriate
release packet destination

if there was a layer 2, copy it back into place

18. do inbound policy checks if it was IPCOMP
19. do connection tracking

20. drop packet back into bottom half queue

2.2.1 Comments upon problems/limitations of receive

3 KLIPS1 static structure

3.1 klipsl radij

The radij module is an adaptation of the BSD radix.c code. It has been
consistently renamed to as to coexist with radix.c. It implements a netmask
aware patricia tree on blocks of data.

An explanation explains that the pronounciation is almost the same since
the “j” is to be pronounced like the Greek chi.

3.2 klipsl eroute

An eroute entry describes an entry in the security policy database. The eroute
currently only includes selectors for source and destination address.

3.3 klipsl tdbh

This is an array of pointers to struct tdb structures. It serves as a root for
chained hash buckets. It is an open hash.

These are managed by the code in ipsec_xform.c. These provide a mapping
from a struct sa_id to a struct tdb based upon SPI, protocol and destination
address.

The entries in each bucket are linked together using the tdb_hnext field.

3.4 klipsl tdb

This structure represents all the information associated with a single transform.
In the case that multiple transforms may be chained together, they are chained
together using tdb_inext and tdb_onext. The “i” and “0” are short for inner
and outer. Thinking of the resulting packet as an onion, these pointers describe

transforms towards the inner and outer directions.

3.5 klipsl md5_ctx

This stores the key context for the MD5 authentication routines. This structure
is different from the MD5_CTX, in that this is the HMAC version and contains an
inner and outer MD5_CTX.

radij

+| ookup()

.

eroute
rjt: rjtentry
+sai d: sa_i
+pi d: i Nt
+count : i nt
+l astti nme: i nt
+eaddr: sockaddr _encap
+emask: sockaddr _encap

tdbh

*______

— tdb
+hnext: tdb
+onext: tdb —
+i next: tdb
+rcvi f: i f net
+sai d: i p_said
+src: sockaddr
+dst : sockaddr

+pr oxy: sockaddr
+key__a: aut hkey
+key_ e: enckey

+1 ookup()

tdb
+hnext: tdb
+onext: tdb
+i next : t db
+rcvi f: ifnet
+sai d: i p_said
+sr c: sockaddr
+dst : sockaddr

+pr oxy: sockaddr
+key_ a: aut hkey
+key e: enckey

il

MD5__ctx

des__eks

tdb
+hnext: tdb
+onext: tdb :1
+i next: tdb
+rcvi f: i fnet
+said: i p_said
+sr c: sockaddr
+dst: sockaddr
+pr oxy: sockaddr
+key__a: aut hkey
+key_ e: enckey

3.6 klipsl shal_ctx

This block is not shown in the diagram, but serves an analogous function to
md5_ctx.

3.7 klipsl des_eks

This block contains a DES key schedule (this is not equivalent to a DES key,
but has been scheduled already). Note that this is really a container and is
assumed to be of the proper size. The DES routines actually take a des_cblock
as input.

4 Detailed Requirements

4.1 001: changeable gw wild-side addresses on-the-fly

4.1.1 001: Definition of requirement

Some systems use DHCP or IPCP (PPP) to get an address assigned. DHCP
in particular has a clear lease time, and at the end of the lease, a different TP
address may be assigned.

The requirement is for FreeS/WAN to interact with address assignment
facilities, adjust lifetime parameters appropriately, and to transparently change
systems with the address change.

4.1.2 001: response

The movement away from a layered device model means that KLIPS should not
interfere with this process. Most of the issues should be on the key management
side (Pluto).

This requirement is useful for Opportunistic Encryption.

4.2 002: address inertia
4.2.1 002: Definition of requirement

The essence of this requirement is that gateway’s can remember where the wild-
side address of road warriors are. Should a reboot (or a restart of Pluto) occur,
it would re-initiate to these clients.

There are three levels of support which may be desireable:

Level 1 record only the wild-side address for re-initiation.

Level 2 record the wild-side address, and all current phase 1 (DH and SKEYID)
keying materials.

Level 3 record the wild-side address, and phase 1 and phase 2 keying materials.

4.2.2 002: response

Satisfaction of level 1 of this requirement will require changes only to Pluto,
specifically to provide a way to get a list of current connections, to record
this in a stable file, and a for the boot up scripts to read the alternate list of
configurations as well. So, this requirement can be satisfied without impact to
KLIPS2 design.

Level 2 of this requirement has some issues. The storage of keying material
on disk may be a source of concern. This issue would need to be addressed in
the design. The source of this requirement is to provide reliable recovery and
fast reboots, systems that involve operator intervention may not satisfy this.
The chief advantage of storing the phase 1 information is that it reduces the

10

amount of time required to do DH exponentiation after a reboot. A new phase
2 would have to be done as well.

Level 3 of this requirement has further issues. It requires some help from
KLIPS2 to provide for the retrieval of keying materials (including replay state)
from the kernel, and subsequent reloading of it. There are clearly even more
issues with making sure that the materials are not inappropriately revealed. In
addition, the state of eroutes, filtering, etc. will need to be captured. Saving of
this information may have very strong advantages in the opportunistic case, as
the information on whether or not to set up an opportunistic tunnels is valuable
as well. Further, in the opportunistic case the risk of disclosure of the keying
material may be considered low enough that storing it is worthwhile.

In all three cases, there is a cost-benefit analysis to do, weighing the im-
provements in reliability and performance against the risks of inappropriate
disclosure. The answer to this analysis may always be a local matter.

In addition, all three cases would apply to restarting of Pluto either on
purpose (to facilitate easy updates), or due to program error (core dump).

There are further legal issues. Access to the keying materials may facilitate
cooperation with law enforcement access. This is not regarded as a feature.

Opportunistic encryption would benefit from any amount of key mainte-
nance. Road warriors are the ones most likely to benefit as they are turned
off/suspended most often. However, their wildside address is also most likely to
change, rendering any saved state that they have useless.

4.3 003: mini-database of road warriors that persists across
reboots

4.3.1 003: Definition of requirement

This requirement appears to be a repeat of requirement 001.

4.4 004: connection up, down, wanted
4.4.1 004: Definition of requirement

All internal SA entries should have a status of whether the connection is up
(keying material is available), down (keying material has expired), or is wanted
(keying material not yet available). This is part one.

There is an additional situation in which the MAST device may need to be
marked down. This is when it is known by the routing system that all routes
to the outer destination will fail. This will typically only be true for systems
without default routes (i.e. that are in a default-free zone). This second feature
is part two.

4.4.2 004: Response

Part one is committed to. There is an issue that we currently do not look for
expired SAs unless we are attempting to use them. To fix this, we will need to

11

walk the SA table periodically.
Part two raises some design questions. Specifically, how does one know if
the outer destination is routable unless looks?

e each SA (and thus each conn) could maintain a pointer to a struct dst_entry.
This has some savings in that one doesn’t have to lookup the route each
time that the SA is used. (One does the lookup if the entry is either
invalid, or non-existant, this is just a cache. The TCP PCB does this as
well)

As these structures are reference counted, we can safely hang on to this.

If asked about link status of a MAST device, then one just has to walk all
SAs associated with this device, looking for at least one with SA which
has not been obsoleted.

e alternatively, we do as we currently do, but upon failure to find a route
to the outer dst, we bash the link status of the device to down. (We only
change when all SAs say down, which makes this somewhat difficult)

Once the device is down, then we should really discard any packets that
arrive at the MAST device. We do not want to waste time encrypting
things we would then through away.

We could do something like let 1% through to do the above test, but that
seems like a poor choice, since routing daemons may have found other
ways around in the meantime, so no traffic would ever reach us.

The first solution is preferred, but neither are committed to at this time.

4.5 005: routing below tunnel layer to support mobility
and multi-homing

4.5.1 005: Definition of requirement

Ciphertext packets should be treated like all other packets, and should be sub-
ject to normal routing proceedures.

4.5.2 005: Response

Implementation of MAST devices and packet escalator should accomplish this.
This is a critical piece for reliability of opportunistic encryption, as current
routing tricks cause plaintext packets to blackhole after a physical interface flap.

4.6 006: SAs entries should be capable of overlapping

4.6.1 006: Definition of requirement

Currently klips1 apparently identifies a tunnel by what remote subnet it serves.
That means that if a new tunnel is brought up serving the same subnet, it
supersedes the previous one.

12

A more complex semantic is required, and a way to express it:
e sometimes you do want the new tunnel to supersede the old one.

e sometimes you want the new tunnel to operate in parallel, using equal-cost
multipath, for load sharing.

e sometimes you want the new tunnel to just sit there in standby mode, to
be used later

— for fail-over
— for mobililty

4.6.2 006: response

This is a misfeature, and is hereby deprecated.
Rollover of SAs is necessary for functional long-term opportunism.

4.7 007: why do equalizing schedulers not play well with
tunnels?

4.7.1 007: Definition of requirement
linux/net/sched/sch_teql.c says:

1. Slave devices MUST be active devices, i.e., they must raise the tbusy
signal and generate E0I events. If you want to equalize virtual devices
like tunnels, use a normal eql device.

A normal “eql” device (linux/drivers/net/eql.c) simply does a simple
form of round-robin scheduling among devices. It can round robin among devices
of equal weight.

The teql scheduling device uses the scheduling system’s back pressure (the
dev->tbusy flag) to give each device as much as it wishes.

4.7.2 007: response

The KLIPS1 ipsecX devices are never busy. They therefore can not be equalized
using this scheduler.

The virtual devices could use the tbusy mechanism. To be able to do this,
the MAST device will have to be given a clear amount of resources on a per-
virtual device basis. As the limit to throughput will be the lesser of encryption
throughput and physical device throughput, once the buffers are full, the virtual
device can raise the tbusy flag.

For this to be useful, the paths to the remote host must be different. Specif-
ically, the outer destination address must in some way be different. If there are
simply two physical ways to get to the same destination address then standard
load-balancing would work once the MAST devices have processed the cleartext.

The use of the tbusy feature is not considered to contribute strongly towards
Opportunistic Encryption. The creation of the MAST device is however critical.

13

4.8 008: decouple SA retrieval from DADDR (don’t care
how it arrived)

4.8.1 008: Definition of requirement
The desire is that the SA lookup by SPI should not depend upon destination

address. This is in contradiction to IPsec requirements, but an implementation
that assigns unique SPI numbers to all protocols can satisfy both requirements.
This requirement also helps NAT traversal in some cases.

4.8.2 008: response

As SPI values are assigned by the receiver for unicast, we can in general ac-
complish this by allocating all SPI values from a single pool. This is committed
to.

This is neutral towards Opportunistic Encryption.

4.9 009: SPIs unique, independant of protocol and DADDR
4.9.1 009: Definition of requirement

This is a variation of requirement #8.

4.10 010: routing above tunnel layer
4.10.1 010: Definition of requirement

see JSD documents.

4.11 011: granularity smaller than host
4.11.1 011: Definition of requirement

It is desired to do SPD lookups based upon UDP/TCP port numbers (source
and destination) as well as source and destination address.
In addition, for hosts a lookup based upon Unix UID should be possible.
For gateways, it is also desirable to do lookup based upon IPSO labels.

4.11.2 011: response

UDP/TCP port number lookups will be present in the second release of KLIPS2.
IPSO labels will be present in the third release of KLIPS2.
This feature will not contribute to Opportunistic Encryption.

14

4.12 012: /dev/ipsecNNN devices that could be chown(1)ed
and chmod(1)ed.

4.12.1 012: Definition of requirement

One of the grand ideas of Unix is the notion that “everything is a file”.

As aresult, network devices don’t show up in /dev/ in a useful way, and they
don’t have file-modes and file-owners. Instead you need to deal with them using
special commands like ifconfig, and special system calls like bind, setsockopt,

As a result, it is clear how to establish an IPsec connection from host A to
host B, but it is really not obvious how to establish an IPsec connection from
user UX (process PX) to user UY (process PY).

Could a user have his own ipsec.conf file? How would that file be related to
the system’s ipsec.conf file?

Even if the user doesn’t have his own ipsec.conf file, how do we implement
per-user or per-process tunnels? I can imagine what the kernel code looks like to
enforce the restrictions, but what does it look like to the user process? Making
it look like a named pipe with a file-owner and some file-permissions is one way...
that makes it look more like good-old ”core” unix but less like other networking
stuff.

4.12.2 012: response

Constructive proposals would be most welcome.
This feature is not committed to in any form at this time.

4.13 013: process to process tunnels
4.13.1 013: Definition of requirement

The idea here goes something like this: User IDs are a clumsy form of identifi-
cation and authentication. Modern systems do much better.

For instance, using ssh, one can have one window (one process group) for
which one has started an ssh-agent which holds one’s certificates.

One can have another window logged in under the same user ID, but with
different certificates, or indeed no certificates at all.

This is the modern approach: security resides in the keys, not in the user
IDs.

User IDs have a clear meaning locally. They have only a weak relationship
on relationship to entities on a distant system.

Certificates do have meaning as anyone with a public key in a trusted store
with clear authorizations attached can trust some entity that has the corre-
sponding private key.

15

4.13.2 013: response

During the definition stage of ”granularity finer than per-host”, (such as in
requirement #11) it will be necessary to clearly articulate what the appropriate
size of a ”grain” will be.

No specific programming work is committed to for satisfaction of this re-
quirement, rather a step in the process for definition of requirement #11 has
been made.

4.14 014: ways to manipulate tunnel perms.

netfilter, pf_key, ioctl, /dev/ipsecNNN

4.14.1 014: Definition of requirement

This is a variation of the question #13: how do user applications request security
services from the kernel.

4.15 015: KLIPS as a loadable module (isn’t it already?)
4.15.1 015: Definition of requirement

The KLIPS system should permit compilation as a loadable module to permit
easy intregration.

4.15.2 015: response

This requirement is currently met in KLIPS1, and will be retained for future
work.

While LKM is a permitted configuration, it must always be possible to com-
pile the module statically.

4.16 016: stats: (number,time_of_last) packets (out,good_in,error_in)
4.16.1 016: Definition of requirement
Each SA bundle should maintain a list of statistics. This should include:
1. number of packets encapsulated
2. time last used to encapsulate
number of packets decapsulated properly
time last used to decapsulate properly

number of packets decapsulated improperly

I S

time last used to decapsulate improperly

16

4.16.2 016: response

These numbers will be maintained. Appropriate locking granularity needs to be
determined.

This feature must be designed in properly for it to work, and is therefore of
priority.

4.17 017: integrate IPsec and firewall policy into Security
Policy.

4.17.1 017: Definition of requirement

To provide industrial-strength security, the IPsec Security Policy Database should
be integrated with the regular Linux firewalling facilities, specifically into the
Netfilter /IPtables code.

Integration provides a single place to express policy. It prevents duplication
of code: this is both a savings in physical quantities (kernel time and code space)
as well as a reduction in opportunities for errors.

4.17.2 017: response

This is a core design requirement for KLIPS3.

4.18 018: full inbound policy checking
4.18.1 018: Definition of requirement

Upon decryption/decapsulation of a packet, the inner set of selectors should
be checked against SA definition. This is a requirement from RFC2401. Tt
provides a paranoid check against possible mis-behaviour/mis-configuration of
a corresponding peer.

4.18.2 018: response

This will be present in the 1.92 release.
This facility will be present in the KLIPS2 design as an optional feature.

4.19 019: secure ciphers and hashes
4.19.1 019: Definition of requirement

The project will use only ciphers and hashes which are known to be secure. The
definition of secure used includes: that the algorithm has sustained a reasonable
length of analysis, that it can not be brute forced with current technology in
less than a decade, and that there are no covert channels.

17

4.19.2 019: response

Use of MD5, SHA1 as hashes and 3DES for cipher is currently used. This will
be maintained.

1DES is considered insecure and will not be added. RC4 is considered inse-
cure and will not be added.

The project will only add new algorithms after extensive discussion. AES is
currently under discussion, but is not scheduled to be added at this time.

4.20 020: kernel implementation (should be faster)
4.20.1 020: Definition of requirement

Appropriate benchmarks are sought to live up to.

4.21 021: plays well with routing daemons
4.21.1 021: Definition of requirement

In order to provide for appropriate interaction with routing daemons, a logi-
cal interface is required to which to anchor routes. The keying status of the
connection should be reflected in to the link status of the logical interface.

4.21.2 021: response

The proposed MAST device satisfied this requirement, and is a defining feature
of KLIPS3.

4.22 022: free of export restrictions
4.22.1 022: Definition of requirement

Many countries have placed restrictions on what their citizens may do, or having
done this, may restrict who the product may be given to. The project’s code
should not be encumbered in this manner.

4.22.2 022: response

The project will continue to refuse contributions from residents or citizens of
the United States of America. The recent changes to the administration of the
BXA are not sufficient cause change this policy as they may change again very
quickly.

18

4.23 023: standard crypto api to add newer ciphers and
hashes

4.23.1 023: Definition of requirement

The current KLIPS1 encapsulation and decapsulation routines make explicit
synchronous calls to the 3DES encrypt and decrypt functions. This causes
three problems:

1. it makes it difficult to add new algorithms, both at compile time and at
runtime.

2. it fails to make use of multiprocessor systems effectively
3. it fails to interface nicely to hardware acceleration devices

A standard API from FreeSWAN KLIPS to algorithm functions (e.g. 3DES-
MD5-ESP) would provide for plug and play capabilities for algorithms.

An asynchronous interface would permit multiple processors or hardware
accelerators to interface easily as well.

Despite this, the packets must still emerge from the system in the same
order that they arrived. That is, they must not be reordered, as this causes
inefficiencies for TCP.

4.23.2 023: response

A design to use an asynchronous interface to algorithms will be provided as part
of KLIPS2.

The design proposed by Bart Trojanowski (rsal) jbart@jukie.net; will be
used as a basis.

4.24 024: opportunistic

4.24.1 024: Definition of requirement

4.25 025: SADB hash table will be locked for additions/deletions
4.25.1 025: Definition of requirement

4.26 026: use a refcount on each SA to increase locking
granularity

4.26.1 026: Definition of requirement

19

5 Proposed data architecture

5.1 klips2 mast

The MAST device provide a mooring point for routing protocols and firewall
policies. The MAST device represents one or more IPsec tunnels.

Packets routed to a MAST device will get encrypted with a default SA. A
different SA may be specified using NetFilter (aka ipchains, aka iptables) rules.

Packets that are received via one of the SAs associated with this device will
be marked as having been received on a MAST device.

The link status of a MAST device reflects the keying status of all underlying
SAs. If at least one SA is keyed, then the MAST device will be up. If no SA that
is associated has valid keys, or if no SAs that are associated with the device,
then the device will be marked down.

This is provided in part to satisfy requirement 21 (see 4.21) and requirement
5 (see 4.5).

5.2 klips2 radij

The radij tree provides a lookup on eroute entities.

While the eroute database provides the IPsec security policy database (SPD),
the radij tree is the index into it by selectors.

It is a BSD radix.c derived table. It has been modified to permit masking of
bits of the index to occur in arbitrary places, thus permitting both source and
destination addresses to be masked.

The radij tree will be replaced or augmented to support additional selectors.
These include UDP/TCP port numbers, SPI numbers (for multiple layers of
gateways), ICMP types and codes, and possibly also IPSO labels.

As opportunistic encryption creates large numbers of fully specified source/destination
pairs, it will be investigated if an auxiliary table could provide a more efficient
storage of these tables. Specifically, it is possible that connection tracking can
more efficiently provide this required index.

5.3 klips2 eroute

The eroute is the object that represents an entry in the IPsec SPD.
This structure will be extended with additional selectors to support require-
ment 11 (see 4.11).

5.4 klips2 ipsec_sa_buckethead

This is the root of the transform database hash table.
This structure is the renamed tdbh.

5.5 klips2 esp_input

The current ipsec_rcv will be cloned to create an ESP receive function.

20

[esp_input]

[ah_input]

mast
+addr: ipv4
+def aul t SA: tdb
+sadb: radij

radij
-+ ookup()

eroute

rjt: rjtentry
eaddr: sockaddr_encap
emask: sockaddr_encap
+sa_type: enum
+said: sa_id
+sa_data: tdb
-pid: int
-count: int
-lasttinme: int

» tdb
+hnext: tdb I
+onext: tdb
+inext: tdb
+said: ip_said
+xf or nops: ops
f or ndat a: opaque

espdata

+ci pherdata: data
+aut hdata: data
+r epl aywi ndow. bi t map

0

esp_ops

+verify_replay_w ndow()
+verify_auth()

+decrypt ()

+updat e_r epl ay_wi ndow()
+encrypt ()

+aut henti cat e()

dsk_

tdb
+hnext: tdb
+onext: tdb
+inext: tdb
+said: ip_said
+xf ormops: ops

éi +xf orndat a: opaque

ipipdata

+i p_src: sockaddr
+i p_dst: sockaddr
+dscp: int

0

{

ipip_ops

+verify_replay_w ndow()
+verify_auth()

+decrypt ()

+updat e_r epl ay_wi ndow()
+encrypt ()

+aut hent i cate()

21

Y

tdb

+hnext: tdb
+onext: tdb
+inext: tdb

+said: ip_said

+xf ormops: ops

+xf orndat a: opaque

5.6 klips2 ah_input

The current ipsec_rcv will be cloned to create an AH receive function.

5.7 klips2 ipsec_sa

This is the renamed tdb structure.

5.8 klips2 espdata

This is a per-SA structure that records all the information needed by the algo-
rithm database functions to perform their functions.

5.9 klips2 esp_ops
This is the set of pointers to functions needed to perform the ESP steps.

5.10 klips2 md5_ctx
This is a subpiece of the espdata structure that stores MD5 keys.

5.11 klips2 ipipdata

This structure provides information needed by the IPIP transform.

5.12 klips2 ipip_ops

This is the set of pointers to functions needed to perform IPIP steps.

22

6 Milestone definitions

6.1 settle on project plan/milestones

The definition of the project plan (this document) and milestones (this section)
must be agreed to. That is, the schedule for developing the schedule is itself
subject to planning. This is this section.

6.2 settle on requirements

The list of requirements for low level rework must be agreed to.
The initial goal is to get the requirement section (??) completed by Septem-
ber 9, 2001.

6.3 target architecture

The target architecture is a set of diagrams and explanatory text. It should be
agreed to by September 15, 2001.

6.4 transition plan

The transition plan explains which work will done first and how it will interact
with other components.
The technical transition plan will be completed by August 31, 2001.

6.5 publish algorithm database design

A design for use of the algorithm database will be done as part of the target
architecture milestone.

6.6 algorithm database work

6.7 ipsec_rcv rework

Work on redoing the receive functions using the algorithm database will begin
in September and will be completed and tested for a release in November. This
will have no externally visible changes to customers, the major goal of this stage
is readability.

This work will consist of the following steps:

1. rename “tdb” structure to “ipsec_sa”’, add reference count.
2. create lifetime structure, moving all lifetime checks to common code.
3. create an ident structure to be friendlier to PF_KEY.

4. create transform data structure and ops structure containing a pointer to
function for each each existing case statement of all “switch” clauses.

23

5. create per-packet state structure (“job”) using the skb->options area and
appropriate macros.

6. split up into pre-crypto, crypto and post-crypto stages, calling each one
directly. (i.e. not through queues or callbacks yet)

7. use of low-level generic algorithm functions (e.g. 3DES, SHA1, MD5) to
perform crypto.

8. a later effort will transform the receive function into the software path of
the target architecture.

6.8 creation of MAST device

The MAST device will be introduced in September as an experimental device.
Select code from the transmit side will be placed into subroutines to be shared
with the xmit rework.

This process will start, however on the receive side with the introduction of
a single MAST device. A member will added to the “ipsec_sa” structure which
will point to an appropriate MAST device. This will be used to set the skb—>dev
pointer to on cleartext packets emerging. This differs from established practice
of pointing it to the ipsecX device.

Note that the “ipsec_sa-jodev” member will be initalized to the single MAST
device at present as no method of setting it from above is provided at this stage.

The skb’s fwmark will be filled in with the SAID index. As an optional mea-
sure, a new member will be added to the skb structure called the “flowpolicy”.
An attempt will be made to get this patch into the mainstream.

This will permit later code to be written to do the tunnel exit checks within
NetFilter.

6.9 ipsec_tunnel_xmit rework

The transmit side will be reworked starting in October for a release in December.
The transmit work will include:

e adapt lifetime structure and checks.
e split into pre-crypto, crypto and post-crypto stages.

e use of low-level generic algorithm functions (e.g. 3DES, SHA1, MD5) to
perform crypto.

o at the KLIPS level at least, stop overloading said SPI value usage. This
should propogate back to Pluto via new PF_KEY extensions, but should
remain compatible for a period.

e eliminate redundant lookup of eroute-;TDB chain by linking eroute di-
rectly to ipsec_sa from eroute using reference counts.

24

e add facility for using netfilter for SA selection. If new “flowpolicy” field
is set, then skip eroute lookup.

e connect MAST transmit to “default” SA. This means that any packets
that are routed to the MAST device will have their flowpolicy set and be
send to the IPsec transmit code.

6.10 netfilter extensions

There is one additional test needed by IPsec and one additional action. These
are:

e 3 predicate to test flowpolicy for a value.

e an action to set flowpolicy to a value.

6.11 netfilter setup/usage by Pluto

There are four things which the setup scripts and/or Pluto will have to learn
about. These are:

e management of multiple MAST devices
e netfilter code to implement SPD

e netfilter code to do exit checks

e extensions for eroute types in PF_KEY

Note that we are augmenting the current eroute code with netfilter that does
the same thing at this stage. This permits experimentation with a new way to
do things, while not impeding compatibility and bug fixes.

A future effort will expose an interface to the generic algorithm interface.

25

