

draft-richardson-t2trg-idevid-considerations

2021-03-11 slides v5.0

https://www.sandelman.ca/SSW/talks/idevid-considerations

Michael Richardson <mcr+ietf@sandelman.ca>

Let's talk about Turtles

- Roots of Trust
- Trust Anchors

IDevID considerations document

- This document is about the quality of the turtles
 - How do they get there?
 - Can they be trusted?
 - How much?
 - For what? (Is the risk mitigation appropriate to the user's threat model?)
- Three fundamental ways to provision initial roots of trust.
- Ultimately, the software update trust anchor **rules everything.**

Roots of Trust

- How are they provisioned?
 - What would be involved in compromising that process?
 - assume: bribery, kidnapping, might be used
 - How can we qualify the different processes?
 - Not every process is appropriate for every end use.
- NDAs abound, but Supply Chain considerations mean some of these things need to get through anyway

Goals of this document

- Enumerate the reasonable, and maybe some less reasonable ways to provision and secure keys, and give them names.
- Not just the most secure way, because it is not always worth it.

admin:password

The document so far

Table of Contents

1. Introduction	. 3
1.1. Terminology	. 4
2. Applicability Model	. 5
2.1. A reference manufacturing/boot process	. 6
3. Types of Trust Anchors	. 7
3.1. Secured First Boot Trust Anchor	. 8
3.2. Software Update Trust Anchor	. 8
3.3. Trusted Application Manager anchor	. 9
3.4. Public WebPKI anchors	. 9
3.5. DNSSEC root	. 9
3.6. What else?	10
4 Types of Identities	10
4 1 Manufacturer installed TDevTD certificates	10
4 1 1 Operational Considerations for Manufacturer TDevTD	. 10
Public Vev Infrastructure	11
4.1.2 Kov Comparation process	. 11
F. Public Key Tefrestructures (PKT)	. 11
5. Fublic Key Infrastructures (FKI)	. 14
5.1. Number of levels of certification authorities	. 15
5.2. Protection of CA private keys	. 1/
5.5. Supporting provisioned anchors in devices	. 1/
6. Evaluation Questions	. 18
6.1. Integrity and Privacy of on-device data	. 18
6.2. Integrity and Privacy of device identify	
infrastructure	. 18
6.3. Integrity and Privacy of included trust anchors	. 19
7. Privacy Considerations	. 19
8. Security Considerations	. 19
9. IANA Considerations	. 20
10. Acknowledgements	. 20
11. Changelog	. 20
12. References	. 20
12.1. Normative References	. 20
12.2. Informative References	. 20

Trust Anchor

 a thing a device uses to verify an external entity's identity

IDevID

- a thing a device uses to prove an identity to an external entity
- ways of provisioning key pair

Industry Consultations

- secdispatch said to take this to industry people to get their feedback
- two public presentations on this, and four private discussions

• yet to get any feedback!

 everyone busy due to pandemic, but still persuing feedback.

Public Key Infrastructure

- using "subordinate" rather than "intermediate"
- self-signed certificate is a PKI of level "one"
 - not counting from zero
- intermediate used in bridge CA use
- See https://fpki.idmanagement.gov/tools/ fpkigraph/

- This document about the shapes of these things.
- Recovery and Resilience
- How are private keys kept safe?

Properties of PKI

- initial-enclave-location:
- initial-enclave-integrity-key:
- initial-enclave-privacy-key:
- first-stage-initialization:
- first-second-stage-gap:
- identity-pki-level:
- identity-time-limits-per-subordinate:
- identity-number-per-subordinate:
- identity-anchor-storage:
- pki-level:
- pki-algorithms:
- pki-level-locked:
- pki-breadth:
- pki-lock-policy:
- pki-anchor-storage:

- many attributes shown on left
- not at all complete!
- How to deal with level of secret splitting?
 - business continuity vs risk of counterfeit

Intended vs Unintended Business Continuity

- Use Shamir Secret
 Sharing on PKI keys
 - 4 out of 7 pieces
 - generallly n of k
- how to distribute pieces?
- do they reconstruct the PKI private key,
 - or do they just restruct the HSM secret that unlocks the private key?

More pieces => more resiliency to "bus events"

higher threshold => more resitence to corruption, bribery, extortion?

If operations are spread across continents, should key pieces too?

HSMs are great, but expensive, and one needs two or three vs a bootable CDrom and any PC?

Confidentiality of IDevID private key..

Adding layer of indirection...

Auditor:

Returns

Normative

Description

Supply Chain Security Audit Firmware

TF

Audit Model

Recognize:

Posessor of Bootloader software update key wins all battles.

- However >pubkey< is provisioned determines insystem risk of entire system.
 - This is the bottom turtle, "Mack", and he'd better not burp.
- Even more critical: how is the private key that can sign code kept?